Course Title: Information Retrieval


Course no: CSC-405                                                                                             Full Marks: 60+20+20
Credit hours: 3                                                                                                        Pass Marks: 24+8+8

Nature of course: Theory (3 Hrs.) + Lab (3 Hrs.)
Course Synopsis: Advanced aspects of Information Retrieval and Search Engine

Goal:   To study advance aspects of information retrieval and working principle of search engine, encompassing the principles, research results and commercial application of the current technologies.

Course Contents:

Unit 1 Introduction:                                                                                                            2 Hrs.
Introduction, History of Information Retrieval, The retrieval process, Block diagram and architecture of IR System, Web search and IR, Areas and role of AI for IR

Unit 2. Basic IR Models:                                                                                                        4 Hrs.
Introduction, Taxonomy of information retrieval models, Document retrieval and ranking, A formal characterization of IR models, Boolean retrieval model, Vector-space retrieval model, probabilistic model, Text-similarity metrics: TF-IDF (term frequency/inverse document frequency) weighting and cosine similarity.

 Unit 3. Basic Tokenizing, Indexing, and Implementation of Vector-Space  Retrieval:                  4 Hrs.
Simple tokenizing, Word tokenization, Text Normalization, Stop-word removal, Word Stemming (Porter Algorithm), Case folding, Lemmatization, Inverted indices (Indexing architecture), Efficient processing with sparse vectors, Sentence segmentation and Decision Trees

Unit 4. Experimental Evaluation of IR:                                                                                         4 Hrs.
Relevance and Retrieval, performance metrics, Basic Measures of text retrieval (Recall, Precision and F-measure)

Unit 5. Query Operations and Languages:                                                                                3 Hrs.
Relevance feedback and pseudo relevance feedback, Query expansion/reformulation (with a thesaurus or WordNet, Spelling correction like techniques), Query languages (Single-Word Queries, Context Queries, Boolean Queries, Natural Language)


Unit 6. Text Representation:                                                                                                    3 Hrs.
Word statistics (Zipf's law), Morphological analysis, Index term selection, Using thesauri, Metadata, Text representation using markup languages (SGML, HTML, XML)


Unit 7. Search Engine:                                                                                                              6 Hrs.
Search engines (working principle), Spidering (Structure of a spider, Simple spidering algorithm, multithreaded spidering, Bot), Directed spidering(Topic directed, Link directed) ,Crawlers (Basic crawler architecture), Link analysis (e.g. hubs and authorities, Page ranking, Google Page Rank), shopping agents


Unit 8. Text Categorization and Clustering:                                                                      6 Hrs.
Categorization algorithms (Rocchio; naive Bayes; decision trees; and nearest neighbor), Clustering algorithms (agglomerative clustering; k-means; expectation maximization (EM)) ,Applications to information filtering; organization

 Unit 9. Recommender Systems:                                                                                         3 Hrs.
Personalization, Collaborative filtering recommendation, Content-based recommendation


Unit 10. Information Extraction and Integration:                                                          3 Hrs.
Information extraction and applications, Extracting data from text, Evaluating IE Accuracy, XML and Information Extraction, Semantic web (purpose, Relation to hypertext page), Collecting and integrating specialized information on the web.

Unit 11. Advanced IR Models with indexing and searching text:                                  4 Hrs.
Probabilistic models, Generalized Vector Space Model, Latent Semantic Indexing (LSI), Efficient string searching, Pattern matching

Unit 12. Multimedia IR                                                                                                    3 Hrs.
Introduction, multimedia data support in commercial DBMSs, Query languages, Trends and research issues


Laboratory Works: The laboratory should contain all the features mentioned in a course

Samples

    Program to demonstrate the Boolean Retrieval Model and Vector Space Model
    Program to find the similarity between documents
    Tokenize the words of large documents according to type and token.
    Segment the documents according to sentences
    Implement Porter stemmer
    Try to build a stemmer for Nepali language
    Build a spider that tracks only the link of nepali documents
    Group the online news onto different categorize like sports, entertainment, politics
    Build a recommender system for online music store


Reference Books:

    Modern Information Retrieval, Ricardo Baeza-Yates, Berthier Ribeiro-Neto.
    Information Retrieval; Data Structures & Algorithms: Bill Frakes

Homework
Assignment:                Assignment should be given from the throughout the semester.
Computer Usage:       No specific
Prerequisite:               Server side programming language like PHP, JSP, ASP.Net (Any One) and with good concept on any programming languages

Category Content:     Science Aspect:           25%
                                     Design Aspect:             75%




0 comments:

Post a Comment

.

.